Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome

نویسندگان

  • R. R. Beenukumar
  • Daniela Gödderz
  • R. Palanimurugan
  • R. J. Dohmen
چکیده

Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC monomers and targets them to the proteasome. Here, we report that polyamines, aside from their role in the control of OAZ synthesis and stability, directly enhance OAZ-mediated ODC degradation by the proteasome. Using a stable mutant of OAZ, we show that polyamines promote ODC degradation in Saccharomyces cerevisiae cells even when OAZ levels are not changed. Furthermore, polyamines stimulated the in vitro degradation of ODC by the proteasome in a reconstituted system using purified components. In these assays, spermine shows a greater effect than spermidine. By contrast, polyamines do not have any stimulatory effect on the degradation of ubiquitin-dependent substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2015A Beenukumar Microbial Cell

Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC mo...

متن کامل

Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme.

Polyamines are essential organic cations with multiple cellular functions. Their synthesis is controlled by a feedback regulation whose main target is ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. In mammals, ODC has been shown to be inhibited and targeted for ubiquitin-independent degradation by ODC antizyme (AZ). The synthesis of mammalian AZ was reported ...

متن کامل

Involvement of the proteasome and antizyme in ornithine decarboxylase degradation by a reticulocyte lysate.

Ornithine decarboxylase (ODC) degradation in a freshly prepared reticulocyte lysate was examined. Immunodepletion of proteasomes from the reticulocyte lysate resulted in almost complete loss of ODC degradation. In contrast with the previously reported degradation in extracts of hepatoma tissue-culture (HTC) and Chinese-hamster ovary (CHO) cells or that by the purified 26 S proteasome, efficient...

متن کامل

Proteasome pathway operates for the degradation of ornithine decarboxylase in intact cells.

Ornithine decarboxylase (ODC) is degraded in an ATP-dependent manner in vitro by the 26 S proteasome in the presence of antizyme, an ODC destabilizing protein induced by polyamines. In the present study we examined whether the proteasome catalyses ODC degradation in living mammalian cells. Lactacystin, the most selective proteasome inhibitor, strongly inhibited the degradation of ODC that had b...

متن کامل

Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity.

Antizyme is a polyamine-induced cellular protein that binds to ornithine decarboxylase (ODC), and targets it to rapid ubiquitin-independent degradation by the 26S proteasome. However, the metabolic fate of antizyme is not clear. We have tested the stability of antizyme in mammalian cells. In contrast with previous studies demonstrating stability in vitro in a reticulocyte lysate-based degradati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015